Using Text Embeddings for Causal Inference

Dhanya Sridhar Joint work with Victor Veitch and David Blei Columbia University

New Directions in Analyzing Text as Data Oct. 4, 2019

Example 1: Effect of Theorems

Does including a theorem in my paper cause it to get accepted?

Example 1: Effect of Theorems

Does including a theorem in my paper cause it to get accepted?

Dataset of papers with theorem inclusion (T) and paper acceptance (Y)

Naive Estimation Strategy

Estimate effect as: $\mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0]$

Mean difference in acceptance rates for theorem-having and not theorem-having papers

Naive Estimation Strategy

Different paper subjects call for theorems, and also have higher or lower acceptance rates

Challenge of Observational Data

```
\mathbb{E}[Y; \operatorname{do}(\mathsf{T}=1)] \neq \mathbb{E}[\mathsf{Y} | \mathsf{T}=1]
```


Conditioning and intervening are not the same

Causal Graphical Model

Solution: Backdoor Adjustment

$\mathbb{E}[Y; \operatorname{do}(T = 1)] = \mathbb{E}_{W}[\mathbb{E}[Y | T = 1, W]]$

High-dimensional Data

$$\mathbb{E}[Y; \operatorname{do}(T = 1)] = \mathbb{E}_{W}[\mathbb{E}[Y | T = 1, W]]$$

High-dimensional!

Solution: Dimensionality Reduction

$$\mathbb{E}[Y; \operatorname{do}(\mathsf{T}=1)] = \mathbb{E}_{Z}[\mathbb{E}[\mathsf{Y} | \mathsf{T}=1, \mathsf{W}]]$$

Insight: confounding variable is a low-dimensional representation of words

Why not topic modeling?

One option: fit generative model of abstract text, e.g., LDA

Why not topic modeling?

One option: fit generative model of abstract text, e.g., LDA But do we really need full data generating distribution?

1. Neural language models produce embeddings that work well for supervised problems.

- 1. Neural language models produce embeddings that work well for supervised problems.
- 2. Out-of-the-box, embeddings may not suffice for causal adjustment.

- 1. Neural language models produce embeddings that work well for supervised problems.
- 2. Out-of-the-box, embeddings may not suffice for causal adjustment.
- 3. **Insight:** the part of text which carries information about treatment and outcome is all that matters.

 $\mathbb{E}[Y; \operatorname{do}(\mathbf{T} = 1)] = \mathbb{E}_{Z}[\mathbb{E}[\mathbf{Y} | \mathbf{T} = 1, Z]]$ $= \frac{1}{n} \sum_{i} \mathbb{E}[Y_{i} | T_{i} = 1, f(W_{i})]$ $= \frac{1}{n} \sum_{i} Q(T_{i}, f(W_{i}))$

Want mapping of words to minimize error on predicting outcomes given treatment

$$\mathbb{E}[Y; \operatorname{do}(T = 1)] = \mathbb{E}_{Z}[\mathbb{E}[Y | T = 1, Z]]$$

$$1 \sum_{X \in Y} \mathbb{E}[Y | T = 1, Z]$$

Learn embedding $\lambda = f(W)$ to predict conditional outcomes

$$= \frac{1}{n} \sum_{i} \mathbb{E}[Y_i | T_i = 1, f(W_i)]$$
$$= \frac{1}{n} \sum_{i} Q(T_i, f(W_i))$$

Want mapping of words to minimize error on predicting outcomes given treatment

 $\mathbb{E}[Y; \operatorname{do}(\mathbf{T} = 1)] = \mathbb{E}_{\mathbf{Z}}[\mathbb{E}[\mathbf{Y} | \mathbf{T} = 1, \mathbf{Z}]]$ $= \frac{1}{n} \sum_{i} \mathbb{E}[Y_i | T_i = 1, f(W_i)]$ $= \frac{1}{n} \sum_{i} Q(T_i, f(W_i))$

Estimators with better statistical efficiency use propensity score:

$$P(T = 1 | \lambda = f(W)) = g(\lambda)$$

 $\mathbb{E}[Y; \operatorname{do}(\mathbf{T} = 1)] = \mathbb{E}_{Z}[\mathbb{E}[\mathbf{Y} | \mathbf{T} = 1, Z]]$ $= \frac{1}{n} \sum_{i} \mathbb{E}[Y_{i} | T_{i} = 1, f(W_{i})]$ $= \frac{1}{n} \sum_{i} Q(T_{i}, f(W_{i}))$

Estimators with better statistical efficiency use propensity score:

$$P(T = 1 | \lambda = f(W)) = g(\lambda)$$

Learn embedding λ to predict conditional outcomes and propensity scores

- 1. Neural language models produce embeddings that work well for supervised problems.
- 2. Out of the box, embeddings may not suffice for causal adjustment
- 3. **Insight:** the part of text which carries information about treatment and outcome is all that matters

Standard BERT

Transformer model that produces a task-specific embedding given a sequence of tokens, e.g., abstract

Causal BERT

Causal BERT

Causal BERT

Causal Estimation

Causal Estimation

Plug into known estimators

Does labeling a Reddit post with gender directly affect its popularity?

Does labeling a Reddit post with gender directly affect its popularity?

Want to estimate direct effect after accounting for effect mediated by variations in text

Does labeling a Reddit post with gender directly affect its popularity?

Estimator of direct effect also involves propensity score and expected outcomes

Does Causal BERT work?

How do we evaluate this method?

Natural direct effects

No available ground truth causal effects!

Does Causal BERT work?

How do we evaluate this method? **Strategy:** simulate only outcomes

Average treatment effects

Natural direct effects

No available ground truth causal effects!

Identify known covariate which text encodes and varies between genders, e.g., subreddit

Simulate outcomes in a way that uses both the treatment and subreddit information

Treatment effect = 1

$$Y_i = T_i + \beta_1(\pi(Z_i) - 0.5) + \epsilon_i, \epsilon_i \sim \mathcal{N}(0, \gamma)$$

Posits that subreddits that men typically post in have more popular posts

Strength of indirect effect

Simulation Studies

Data:

- 1) **PeerRead:** arXiv papers (cs.cl, cs.lg, or cs.ai) with accept decision, theorem inclusion and buzzy title ('deep', 'neural', 'embed' or 'adversarial net')
- 2) **Reddit:** top-level comments from subreddits with gender labels and upvotes

Simulation Studies

Data:

- 1) **PeerRead:** arXiv papers (cs.cl, cs.lg, or cs.ai) with accept decision, theorem inclusion and buzzy title ('deep', 'neural', 'embed' or 'adversarial net')
- 2) **Reddit:** top-level comments from subreddits with gender labels and upvotes

Comparisons

- 1) **BOW:** expected outcomes and propensity score models fit with BOW features
- 2) **LDA:** models fit with each document's inferred topic proportions

Reddit Simulation

Reddit: top-level comments from subreddits with gender labels and upvotes

Noise:		$\gamma = 1.0$			$\gamma = 4.0$		
Confounding:	Low	Med.	High		Low	Med.	High
Ground truth	1.00	1.00	1.00		1.00	1.00	1.00
Unadjusted	1.03	1.24	3.48		0.99	1.22	3.51
Words $\hat{eta}^{\mathrm{plugin}}$	1.01	1.17	2.69		1.04	1.16	2.63
Words $\hat{\beta}^{\text{TMLE}}$	1.02	1.18	2.71		1.04	1.17	2.65
$ ext{LDA} \hat{eta}^{ ext{plugin}}$	1.01	1.20	2.95		1.02	1.19	2.91
LDA $\hat{eta}^{\mathrm{TMLE}}$	1.01	1.20	2.96		1.02	1.19	2.91
$\hat{eta}^{\mathrm{plugin}}$	0.96	1.05	1.24		0.83	0.63	1.31
$\hat{eta}^{\mathrm{TMLE}}$	0.98	1.05	1.58	-	0.95	1.00	1.51

Across two estimators of treatment effect

PeerRead Simulation

PeerRead: arXiv papers (cs.cl, cs.lg, or cs.ai) with accept decision, theorem metadata and buzzy title

Confounding:	Low	Med.	High
Ground truth	0.06	0.05	0.03
Unadjusted	0.08	0.15	0.16
Words $\hat{\psi}^Q$	0.07	0.13	0.15
Words $\hat{\psi}^{\mathrm{TMLE}}$	0.07	0.13	0.15
LDA $\hat{\psi}^Q$	0.06	0.06	0.06
LDA $\hat{\psi}^{\mathrm{TMLE}}$	0.06	0.06	0.06
$\hat{\psi}^Q$	0.07	0.06	-0.01
$\hat{\psi}^{\mathrm{TMLE}}$	0.06	0.07	0.04

Example 1: Effect of Theorems

Does including a theorem in my paper cause it to get accepted?

	buzzy	theorem		
Unadjusted	0.08 ± 0.01	0.21 ± 0.01		
$\hat{\psi}^Q$	0.01 ± 0.03	0.03 ± 0.03		
$\hat{\psi}^{ ext{TMLE}}$	0.06 ± 0.04	0.10 ± 0.03		

On PeerRead

Conclusions

- 1. Adapted black-box embedding method, e.g., BERT, to obtain embeddings that can be used to make valid causal inferences.
- 2. Using metadata like subreddit and buzzy title, which text encodes, we simulated outcomes that are affected by confounders or mediators.
- 3. Empirical studies suggested that Causal BERT embedding best captures the information in text that's needed for adjustment.

Conclusions

- 1. Adapted black-box embedding method, e.g., BERT, to obtain embeddings that can be used to make valid causal inferences.
- 2. Using metadata like subreddit and buzzy title, which text encodes, we simulated outcomes that are affected by confounders or mediators.
- 3. Empirical studies suggested that Causal BERT embedding best captures the information in text that's needed for adjustment.

Code and data: github.com/blei-lab/causal-text-embeddings Contact: {vveitch, dhanya.sridhar}@columbia.edu